Retrotransposon Silencing During Embryogenesis: Dicer Cuts in LINE

  • Geoffrey J. Faulkner mail

    Affiliations: Cancer Biology Program, Mater Medical Research Institute, South Brisbane, Australia, School of Biomedical Sciences, University of Queensland, Brisbane, Australia

  • Published: November 07, 2013
  • DOI: 10.1371/journal.pgen.1003944

Fossilised mobile genetic elements, including Long Interspersed Element-1 (LINE-1 or L1) retrotransposons, comprise at least two-thirds of the human genome [1]. Their molecular history is reminiscent of speciation and natural selection, where, as noted by Carl Sagan, “Extinction is the rule. Survival is the exception” [2]. Broadly, the life cycle of a retrotransposon begins with innovation to evade host genome surveillance, followed by “copy-and-paste” retrotransposition and, finally, quiescence as a result of host defence adaptation. Before being tamed, a new or newly reactivated retrotransposon can undergo massive copy number amplification. For instance, more than one million copies of the primate-specific Short Interspersed Element (SINE) Alu comprise 11% of the human genome [3]. Even more impressively, approximately 500,000 copies of a single retrotransposon superfamily, Gypsy, occupy nearly half of the maize genome [4]. Thus, retrotransposons can overrun a genome within a brief evolutionary period, making their suppression a high host priority.

Retrotransposition requires transcription of an RNA template for DNA-primed reverse transcription. Several cellular defence mechanisms have evolved to hinder this process, including: 1) promoter methylation and heterochromatinisation, 2) degradation of retrotransposon transcripts via RNA interference (RNAi), and 3) host factor prevention or destabilisation of reverse transcription. To describe in detail just one of a myriad of specific inhibitory pathways, repeat associated small interfering RNAs (rasiRNAs) are present in plant, worm, fly, fish, and mouse gametes and, therefore, represent a highly conserved defence against germ line retrotransposition [5][8]. A plausible model of rasiRNA biogenesis involves bidirectional transcription of opposed retrotransposon promoters [9], [10], resulting in the formation of double-stranded RNAs (Figure 1). These are cleaved by Dicer (DCR) and then assembled with Argonaute (AGO) and other proteins into the RNA-induced silencing complex (RISC) that, in turn, produces RNAi against retrotransposon transcripts [11]. The suppressive influence of rasiRNAs, in concert with other pathways, may explain why retrotransposition is more common during embryogenesis than in gametes [12], [13]. Importantly, although rasiRNAs have been found in stem cells and soma, their capacity to suppress retrotransposition during development is relatively unexplored [14][16].


Figure 1. rasiRNAs inhibit LINE-1 expression in mESCs.

Mouse LINE-1s are comprised of two ORFs flanked by 5′ and 3′UTRs. Several monomers in the 5′UTR provide promoter activity. Following the LINE-1 expression and copy number variation data of Ciaudo et al., bidirectional transcription of the 5′UTR generates sense and antisense LINE-1 RNAs. The Drosha-DGCR8 Microprocessor cleaves these precursors into pre-miRNAs, which are processed into miRNAs by Dicer, but may not be loaded into the RISC complex. By contrast, double-stranded RNAs potentially formed by sense/antisense pairing of LINE-1 RNAs are also cleaved by Dicer but here generate rasiRNAs, loaded into the RISC complex, which degrade canonical LINE-1 mRNAs. Dicer also appears to mediate LINE-1 promoter methylation (not shown).


In this issue of PLOS Genetics, Ciaudo et al. [17] describe rasiRNA-mediated suppression of LINE-1 activity in mouse embryonic stem cells (mESCs). Focusing on the L1-Tf subfamily, where they previously described an unusual rasiRNA signature mapping to the 5′UTR [15], Ciaudo et al. observed that knock-out of Dicer markedly decreases L1-Tf promoter methylation and increases L1-Tf transcription, translation, and copy number in cultured mESCs. In particular, DCR−/− mESCs accumulate a remarkable 860 L1-Tf copies (greater than five megabases of genomic DNA) per cell over 20 passages, versus 255 copies per cell in DCRFlx/Flx controls, based on SYBR-Green qPCR targeting the L1-Tf 5′UTR. High-throughput small RNA sequencing then confirmed that DCR−/− mESCs were depleted of approximately 22 nt molecules found in wild-type mESCs, immunoprecipitated with AGO2 and aligned to L1-Tf, and therefore resembling rasiRNAs. Hence, LINE-1 activation in DCR−/− mESCs coincides with rasiRNA depletion and is also possibly influenced by ablation of Dicer-mediated LINE-1 promoter methylation.

Intriguingly, a second class of Dicer- and AGO2-independent small RNAs were found to “paint” the L1-Tf 5′UTR. Again, assessing L1-Tf transcription and copy number, Ciaudo et al. found that deletion of XRN2 and DGCR8, respective members of the RNA surveillance and Drosha-DGCR8 Microprocessor pathways, led to increased L1-Tf transcription but not copy number amplification. These observations agree with other recent reports of small RNAs immunoprecipitated with DGCR8 and enriched for LINE-1 sequences [18], as well as evidence of elevated L1-Tf expression in DGCR8−/− mESCs [19]. As a final experiment, Ciaudo et al. complemented DCR−/− mESCs with human Dicer and found that these cells recapitulated wild-type mESC LINE-1 suppression and differentiated normally, unlike DCR−/− mESCs.

Evidence for a reciprocal relationship between rasiRNA depletion and LINE-1 activation significantly advances our understanding of RNAi-mediated control of retrotransposition during mammalian embryogenesis. These data are also important because they address a longstanding question of why rasiRNAs cannot be consistently detected in mammalian somatic cells: small RNAs generated by RNA surveillance and the Microprocessor may cleave the same pool of precursor LINE-1 mRNAs processed by Dicer and obscure rasiRNA detection (Figure 1). As Ciaudo et al. note, it is possible that insertional mutagenesis caused by LINE-1 contributes to the reported differentiation defects for DCR−/− mESCs [20], though it is unclear why lesser but still substantial LINE-1 activity is tolerated by wild-type mESCs. Interestingly, experiments using engineered LINE-1 reporters have shown elsewhere [16], [19] that mutation of Dicer or the Microprocessor increases LINE-1 mobilisation in cancer cells, with the latter result at odds with data generated here from mESCs. Future advances in high-throughput sequencing and single cell genomics should enable characterisation of endogenous LINE-1 mobilisation events in stem cells and further delineate the multifaceted roles of Dicer and other factors in LINE-1 inhibition.


  1. 1. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7: e1002384 doi:10.1371/journal.pgen.1002384.
  2. 2. Sagan C, Druyan A (2006) The varieties of scientific experience : a personal view of the search for God. New York: Penguin Press. xviii, 284 p. p.
  3. 3. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
  4. 4. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.
  5. 5. Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, et al. (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453: 798–802. doi: 10.1038/nature07007
  6. 6. Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426: 310–314. doi: 10.1038/nature02107
  7. 7. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, et al. (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136: 461–472. doi: 10.1016/j.cell.2008.12.038
  8. 8. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, et al. (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453: 539–543. doi: 10.1038/nature06908
  9. 9. Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21: 1973–1985. doi: 10.1128/mcb.21.6.1973-1985.2001
  10. 10. Zemojtel T, Penzkofer T, Schultz J, Dandekar T, Badge R, et al. (2007) Exonization of active mouse L1s: a driver of transcriptome evolution? BMC Genomics 8: 392. doi: 10.1186/1471-2164-8-392
  11. 11. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293–296.
  12. 12. Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH, et al. (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16: 1569–1577. doi: 10.1093/hmg/ddm105
  13. 13. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, et al. (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23: 1303–1312. doi: 10.1101/gad.1803909
  14. 14. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22: 2773–2785. doi: 10.1101/gad.1705308
  15. 15. Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, et al. (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956–969. doi: 10.1016/j.cell.2010.04.042
  16. 16. Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13: 763–771. doi: 10.1038/nsmb1141
  17. 17. Ciaudo C, Jay F, Okamoto I, Chen CJ, Sarazin A, et al. (2013) RNAi-dependent and independent control of LINE1 mobility and accumulation in mouse Embryonic Stem Cells. PLoS Genet 9 e1003791 doi: 10.1371/journal.pgen.1003791.
  18. 18. Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, et al. (2012) DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol 19: 760–766. doi: 10.1038/nsmb.2344
  19. 19. Heras SR, Macias S, Plass M, Fernandez N, Cano D, et al. (2013) The Microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol doi:10.1038/nsmb.2658.
  20. 20. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, et al. (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19: 489–501. doi: 10.1101/gad.1248505